...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Juno maps water ice across northern Ganymede

Juno maps water ice across northern Ganymede

Written by  Wednesday, 20 January 2021 12:41
Write a comment
Juno maps water ice across northern Ganymede
The Jovian Infrared Auroral Mapper aboard the Juno spacecraft captured these images of Jupiter’s moon Ganymede on 26 December 2019. Credit: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM

Jupiter's moon Ganymede is the largest planetary satellite in the solar system. It's also one of the most intriguing: Ganymede is the only moon with its own magnetic field, it is the most differentiated of all moons, and it likely possesses a subsurface ocean of liquid water. It was studied by the early Jupiter flybys made by the Pioneer and Voyager spacecraft, but our understanding today rests largely on observations made by NASA's Galileo orbiter from 1995 to 2003.

Mura et al. now report some of the first in situ observations of Ganymede since the end of the Galileo mission. They used the Jovian Infrared Auroral Mapper (JIRAM) on board NASA's Juno spacecraft to take images and spectra of the moon's north polar region.

On 26 December 2019, Juno passed Ganymede at a distance of about 100,000 kilometers, enabling JIRAM to map this region at a spatial resolution of up to 23 kilometers per pixel.

As Juno flies past Ganymede, the spacecraft can observe physical locations on the moon's surface from a variety of angles. By comparing the brightness of these regions across a range of observation and illumination geometries, the authors developed a photometric model for Ganymede's surface reflectance. They observed that wavelength-dependent reflectance relationships sometimes break down in the vicinity of relatively fresh craters, perhaps because of a larger average size of ice grains in these regions.

Combining their model with spectral observations of the 2-micrometer water ice absorption band allowed the authors to map the distribution of water ice in the north polar region. Where these estimates overlapped with maps derived from Earth-based telescopic observations, the researchers found largely good agreement. This congruence enabled them to extend the global water ice map for Ganymede to much more northerly latitudes.

Observations in other spectral bands also revealed the presence of nonwater on the surface of Ganymede, including possible detections of hydrated magnesium salts, ammonia, , and a range of organic molecules.



More information: A. Mura et al. Infrared Observations of Ganymede From the Jovian InfraRed Auroral Mapper on Juno, Journal of Geophysical Research: Planets (2020). DOI: 10.1029/2020JE006508
Provided by Eos

This story is republished courtesy of AGU Eos (https://eos.org/). Read the original story here.

Citation: Juno maps water ice across northern Ganymede (2021, January 21) retrieved 21 January 2021 from https://phys.org/news/2021-01-juno-ice-northern-ganymede.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...