The night sky is speckled with the light from hundreds of billions of stars within our galaxy. The brightest few thousand of these celestial bodies captivate the human eye and imagination. For astronomers seeking to detect undiscovered stars and, potentially, the planets around them, however, this brightness can be problematic as it may overwhelm the light coming from fainter, nearby objects.
Research from Florida Tech graduate research assistant Sailee Sawant, presented at the 237th meeting of the American Astronomical Society (AAS) on Jan. 15, has demonstrated a remarkable leap forward in the use of a new class of imaging detector, the charge-injection device (CID), to capture extreme contrast ratio (ECR) images needed to overcome the brightness of nearby stars.
In her dissertation, "Extreme Contrast Ratio Imaging of Sirius with a Charge-Injection Device," Sailee reported four key findings:
+ The acquisition of an unsaturated image of Sirius with an exposure time of 180 seconds, which had never been done before.
+ The detection and resolution of previously uncataloged sources, along with Sirius B, without imposing complex operational requirements.
+ The demonstration of a direct, achievable contrast ratio of 1:100 million with the 1.0m Jacobus Kapteyn Telescope in La Palma, Canary Isles. This is a five times improvement over the previous work done with Florida Tech's 0.8M telescope.
+ The success of a simple, cost-effective, yet powerful technique that combines CID imaging and software-based image analysis.
Sawant's work is a continuation of CID and ECR research at Florida Tech that dates to 2014, when a team led by Sawant's advisor, Daniel Batcheldor, at the time head of the Department of Physics and Space Sciences, received a Center for the Advancement of Science in Space grant to test a CID camera on the International Space Station.
In 2016, Batcheldor's research findings demonstrated CIDs have the ability to capture light from objects tens of millions of times fainter than another object in the same image. A year later, the CASIS-funded grant came to fruition, as the camera was demonstrated to function on low-Earth orbit on the space station.
Batcheldor and Sawant's research using CID technology focused on Sirius, the brightest star in our night sky, and its smaller white dwarf companion, Sirius B. Typically, it is challenging to image Sirius B near Sirius' brighter light.
However, using the Jacobus Kapteyn Telescope in La Palma, Canary Isles, CID and ECR technology, and algorithms that increase picture clarity, the researchers were able to easily detect the white dwarf.
Previously uncatalogued stars were also found in the same field as Sirius, potentially providing a sample of interesting new targets for follow up research.
"We took this image and did some data reduction on it, but could see a speck of Sirius B, and I remember Dr. Batcheldor tweeting that we had this raw image from the observatory," Sawant said.
Even with CIDs and ECR making more stars detectable, a lot of work goes into processing the image after it has been captured. Sawant's image analysis methods incorporate wavelet transform algorithms to analyze images at different resolution scales.
Additionally, she has to filter and reconstruct the image and acquire the source information. By doing this, Sawant is able to tell how bright one star is in comparison to another, much fainter one.
Related Links
Florida Tech
Stellar Chemistry, The Universe And All Within It
| Tweet |
Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain. With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords. Our news coverage takes time and effort to publish 365 days a year. If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution. | ||
SpaceDaily Monthly Supporter
$5+ Billed Monthly | SpaceDaily Contributor
$5 Billed Once credit card or paypal |
Roman Space Telescope could image 100 Hubble ultra deep fields at once
Baltimore MD (SPX) Jan 12, 2021
In 1995, the Hubble Space Telescope stared at a blank patch of the sky for 10 straight days. The resulting Deep Field image captured thousands of previously unseen, distant galaxies. Similar observations have followed since then, including the longest and deepest exposure, the Hubble Ultra Deep Field. Now, astronomers are looking ahead to the future, and the possibilities enabled by NASA's upcoming Nancy Grace Roman Space Telescope. ... read more