![Copernical Team](/components/com_k2/images/placeholder/user.png)
Copernical Team
Virgin Galactic plans its next commercial flight to the edge of space for August
![](/plugins/content/jlexcomment/assets/icon.png)
![Virgin Galactic's VSS Unity departs Mojave Air & Space Port in Mojave, Calif., for the final time as Virgin Galactic shifts its SpaceFlight operations to New Mexico, Feb. 13, 2020. Virgin Galactic is aiming for early August 2023 for its next flight to the edge of space, a trip that is expected to include the first of many ticket holders who have been waiting years for their chance at weightlessness aboard the company's rocket-powered plane. Credit: Matt Hartman via AP, File Virgin Galactic plans its next commercial flight to the edge of space for August](https://scx1.b-cdn.net/csz/news/800a/2023/virgin-galactic-plans.jpg)
Preventing traffic accidents to the moon and back
Plasma spectrometer delivered for moon mission
![](/plugins/content/jlexcomment/assets/icon.png)
![SwRI's James Noll and Benjamin Rodriguez prepare the MAPS instrument for delivery and integration into NASA's Lunar Vertex lander. It will gather sensitive, high-resolution insights about the Moon's surface, offering more than four times the resolution of orbital instruments, while weighing just 11 pounds (five kilograms) and drawing less than 6 watts of power. Credit: Southwest Research Institute SwRI delivers plasma spectrometer for Moon mission](https://scx1.b-cdn.net/csz/news/800a/2023/swri-delivers-plasma-s.jpg)
Southwest Research Institute has delivered a plasma spectrometer for integration into a lunar lander as part of NASA's Lunar Vertex investigation, scheduled to commence next year.
Decoding the impact flash created by high-velocity impacts
![](/plugins/content/jlexcomment/assets/icon.png)
![Credit: Pixabay/CC0 Public Domain satellites](https://scx1.b-cdn.net/csz/news/800a/2022/satellites.jpg)
In an experimental study published in PNAS Nexus, researchers explore the visible impact flash that is created by high-velocity impacts.
Impacts by debris and meteoroids pose a significant threat to satellites, space probes, and hypersonic craft. Such high-velocity impacts create a brief, intense burst of light, known as an impact flash, which contains information about both the target and the impactor.
Gary Simpson, K.T. Ramesh, and colleagues explored the impact flash by shooting stainless steel spheres into an aluminum alloy plate, at a speed of three kilometers per second—about 6,700 miles per hour, or more than nine times the speed of sound.
The resulting impact flashes were photographed using ultra-high-speed cameras and high-speed spectroscopy, which measures the color and brightness of the light. Immediately after impact, a luminous disk is seen expanding around the impacting sphere. Only a few millionths of a second later, the disk takes on an almost floral shape, as fragments ejected from the impact crater form an ejecta cone, with petal-like projections at the outer edge.
Plato’s structural test campaign
![](/plugins/content/jlexcomment/assets/icon.png)
![](https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2023/06/plato_in_esa_s_leaf_room2/24986301-1-eng-GB/Plato_in_ESA_s_LEAF_room_card_full.jpg)
From May to August 2023 a structural model of ESA’s next exoplanet mission, Plato, is undergoing a test campaign at ESA’s ESTEC Test Centre, at Noordwijk in the Netherlands. Plato is planned to launch on an Ariane 6 in 2026. During lift-off Plato will have to withstand intense vibrations and immense blasts of noise. To make sure the satellite can survive the start of its journey to space, engineers test its structural integrity beforehand.
Plato in ESA's LEAF room
![](/plugins/content/jlexcomment/assets/icon.png)
![](https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2023/06/plato_in_esa_s_leaf_room/24986137-1-eng-GB/Plato_in_ESA_s_LEAF_room_card_full.jpg)
This image shows ESA’s next exoplanet mission, Plato, in the Large European Acoustic Facility (LEAF). In this room, the noise of a rocket taking off is simulated. The large room measures 11 by 9 metres and is 16.4 metres high. One wall is equipped with multiple noise horns, that have a similar design as ordinary speakers. Nitrogen is shot through the horns and can produce noise up to 156 decibels. During tests, no one is allowed into the room that is surrounded by a 0.5-m-thick layer of concrete to keep the noise in. Plato passed its test with
Moon stance
![](/plugins/content/jlexcomment/assets/icon.png)
![Moon stance](https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2023/07/moon_stance/24989466-1-eng-GB/Moon_stance_card_full.jpg)
ESA ground stations support Chandrayaan-3 Moon mission
Euclid’s large halo around indefinitely small point
Space awaits you! More ESA vacancies now open for applications
![](/plugins/content/jlexcomment/assets/icon.png)
![Space awaits you!](https://www.esa.int/var/esa/storage/images/esa_multimedia/images/2023/06/space_awaits_you/24919634-1-eng-GB/Space_awaits_you_card_full.jpg)
In March, we announced that 2023 would see the publication of over 300 vacancies at ESA. New vacancies keep being published as we continue our search for talented and motivated professionals to join our teams across Europe and support our mission of the peaceful exploration of space for the benefit of everyone. Could ESA be the next step in your career? Read more to find out!