Copernical Team
Copernicus: Sentinel-3 - Global Sea/Land Monitoring Mission including Altimetry
The Sentinel-3 (S3) mission of ESA and the EC is one of the elements of the GMES (Global Monitoring for Environment and Security) program, which responds to the requirements for operational and near-real-time monitoring of ocean, land and ice surfaces over a period of 20 years. The topography element of this mission will serve primarily the marine operational users but will also allow the monitoring of sea ice and land ice, as well as inland water surfaces, using novel observation techniques.The Sentinel-3 mission is designed as a constellation of two identical polar orbiting satellites, separated by 180º, for the provision of long-term operational marine and land monitoring services. The operational character of this mission implies a high level of availability of the data products and fast delivery time, which have been important design drivers for the mission. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14)
The Sentinel-3 program represents a series of operational spacecraft over the envisioned service period to guarantee access to an uninterrupted flow of robust global data products.
Copernicus: Sentinel-2 - The Optical Imaging Mission for Land Services
Sentinel-2 is a multispectral operational imaging mission within the GMES (Global Monitoring for Environment and Security) program, jointly implemented by the EC (European Commission) and ESA (European Space Agency) for global land observation (data on vegetation, soil and water cover for land, inland waterways and coastal areas, and also provide atmospheric absorption and distortion data corrections) at high resolution with high revisit capability to provide enhanced continuity of data so far provided by SPOT-5 and Landsat-7. 1) 2) 3) 4) 5) 6) 7) 8)
European Global Navigation Satellite Systems Agency (GSA)
The GSA’s mission is to support European Union objectives and achieve the highest return on European GNSS investment, in terms of benefits to users and economic growth and competitiveness, by:
- Designing and enabling services that fully respond to user needs, while continuously improving the European GNSS services and Infrastructure;
- Managing the provision of quality services that ensure user satisfaction in the most cost-efficient manner;
- Engaging market stakeholders to develop innovative and effective applications, value-added services and user technology that promote the achievement of full European GNSS adoption;
- Ensuring that European GNSS services and operations are thoroughly secure, safe and accessible.
Telespazio Spa
Telespazio provides services that include the design and development of space systems, the management of launch services and in-orbit satellite control, Earth observation services, integrated communications, satellite navigation and localization and scientific programmes. The company manages space infrastructure, such as the Fucino Space Centre - and is involved in programmes including Galileo, EGNOS, Copernicus, COSMO-SkyMed, SICRAL and Göktürk.
Telespazio operates in France with Telespazio France; in Germany with Telespazio VEGA Deutschland GmbH, GAF and Spaceopal ; in the United Kingdom with Telespazio VEGA United Kingdom; in Spain with Telespazio Ibérica; in Hungary with Telespazio Hungary and in Romania with Rartel. Telespazio operates in South America through Telespazio Brasil and Telespazio Argentina. It operates in the USA through Telespazio North America. In Italy, the company is also present through e-GEOS.
Telespazio Spa is a European spaceflight services company founded in 1961. It is a joint venture owned by Leonardo (67%) and Thales Group (33%) headquartered in Rome.
Orion Window Panel Complete for Front-Row View on Artemis Moon Mission
As NASA's Orion spacecraft approaches the Moon on the Artemis III mission to put the first woman and next man on the lunar surface, the crew will get a glimpse through the spacecraft's windows. The first element machined for the Artemis III Orion crew module - a cone panel with openings for windows which will provide that spectacular view - was designed by Orion's lead contractor, Lockheed
Copernicus: Sentinel-1 - The SAR Imaging Constellation for Land and Ocean Services
Sentinel-1 is the European Radar Observatory, representing the first new space component of the GMES (Global Monitoring for Environment and Security) satellite family, designed and developed by ESA and funded by the EC (European Commission). The Kopernikus missions (Sentinel-1, -2, and -3) represent the EU contribution to GEOSS (Global Earth Observation System of Systems).
MetOp (Meteorological Operational Satellite Program of Europe)
MetOp-A is Europe's first polar-orbiting (LEO) satellite dedicated to operational meteorology. The MetOp program was originally planned as a much larger satellite concept, called POEM (Polar-Orbit Earth-Observation Mission), a successor mission series to ERS-1/2 on the Columbus Polar Platform (PPF design).
However, this idea was abandoned at the ESA Ministerial Council in Granada, Spain, in 1992. Instead, Envisat and MetOp were born. Full approval of the EPS (EUMETSAT Polar System) program was granted in September 1998. The MetOp program is planned as a series of three satellites to be launched sequentially over an observational period of 14 years, starting in 2006 with MetOp-A (2010, 2014), it represents the space segment of EPS. 1) 2)
SOHO (Solar and Heliospheric Observatory)
SOHO is an ESA/NASA collaborative mission within ESA's `Solar Terrestrial Science Program' (STSP), and it is also part of ISTP (International Solar Terrestrial Physics Program). So far, SOHO represents the most comprehensive space mission devoted to the study of the sun and of the heliosphere. Within the collaborative mission, the functions are divided in the following way: ESA is responsible for S/C procurement, integration and testing; NASA provided the spacecraft launch and mission operations from GSFC. The following overall mission objectives are pursued: 1) 2) 3) 4) 5) 6)
• Solar spectroscopy at soft X-ray and EUV wavelengths (study of the composition of the solar corona, of the structure and dynamics of the magnetic structures making up the corona, and of coronal holes, etc.)
• Study of the structure and dynamics of the solar interior through the observation of minute oscillations on the sun's surface (helio-seismology).
• Study of the solar wind and solar energetic particles, interaction with the Earth, plasma processes in both the solar and magnetospheric context.
Alphasat I / Inmarsat-XL (Inmarsat-Extended L-band Payload) / InmarSat-4A F4
Alphasat is a mobile communications service spacecraft in GEO of Inmarsat Plc. of London, UK, referred to as Inmarsat 1-XL. It uses the first next-generation European Alphabus platform and carries in addition to the commercial Inmarsat payloads four hosted TDPs (Technology Demonstration Payloads) of ESA (European Space Agency). The Alphabus/Alphasat project is covered by the ARTES-8 (Advanced Research in Telecommunications Systems) European program. The four hosted payloads on Alphasat I are: 1)
• TDP1: An advanced LCT (Laser Communication Terminal) representing a further development of already existing flight hardware on TerraSAR-X, NFIRE and TanDEM-X. The objective is to demonstrate GEO-LEO ISLs (Intersatellite Links) of high data rate transmissions (optical link at 1064 nm, 1.8 Gbit/s user data rate), complemented with a Ka-band payload developed by Tesat Spacecom (Germany). The payload is funded by DLR.
• TDP5: Two experimental Q/V-band communications transponders to assess the feasibility of these bands for future commercial applications - developed by TAS-I and Space Engineering, Italy.
• TDP6: Demonstration of an advanced Star Tracker with active pixel detector - developed by Jenoptik of Germany.
• TDP8: Demonstration of an environment effects facility to monitor the GEO radiation environment and its effects on electronic components and sensors - developed by Effacec (Portugal).
NanoSail-D2
NanoSail-D2 is a technology demonstration experiment of NASA with the primary objective to deploy a compact solar sail boom system in space.
In a previous attempt, a team from the NASA/MSFC, along with a team from the NASA/ARC (Ames Research Center), developed a solar sail mission called NanoSail-D which was lost in a launch failure aboard a Falcon 1 rocket on August 3, 2008.
Two units of the NanoSail-D satellites have been built. NASA/MSFC plans to launch the backup NanoSail-D payload from a 3U CubeSat (nanosatellite) of ARC on the FASTSat-HSV mission. FASTSat is required to launch the nanosatellite before the NanoSail-D2 payload can be launched and deployed from the nanosatellite.