
Copernical Team
NASA is returning to Venus to learn how it became a hot poisonous wasteland

Lunar samples record impact 4.2 billion years ago

The sun's clock

NASA pursues greener, more efficient spacecraft propulsion

NASA, SpaceX Update Crew Launch and Return Dates

Discovery of the largest rotation in the universe

G7 nations commit to the safe and sustainable use of space

China ready to launch first crew to new space station

First-of-its-kind study finds lightning impacts edge of space in ways not previously observed

Solar flares jetting out from the sun and thunderstorms generated on Earth impact the planet's ionosphere in different ways, which have implications for the ability to conduct long range communications.
A team of researchers working with data collected by the Incoherent Scatter Radar (ISR) at the Arecibo Observatory, satellites, and lightning detectors in Puerto Rico have for the first time examined the simultaneous impacts of thunderstorms and solar flares on the ionospheric D-region (often referred to as the edge of space).
In the first of its kind analysis, the team determined that solar flares and lightning from thunderstorms trigger unique changes to that edge of space, which is used for long-range communications such the GPS found in vehicles and airplanes.
The work, led by New Mexico Tech assistant professor of physics Caitano L.
What mission could detect oceans at Uranus' moons?

Exploration of ocean worlds has become a hot topic of late, primarily due to their role as a potential harbor for alien life. Moons that have confirmed subsurface oceans garner much of the attention, such as Enceladus and Europa. But they may not be the only ones. Uranus' larger moons—Miranda, Ariel and Umbriel could potentially also have subsurface oceans even farther out into the solar system. We just haven't sent any instruments close enough to be able to check. Now, a team led by Dr. Corey Cochrane at NASA's Jet Propulsion laboratory has done some preliminary work to show that a relatively simple flyby of the Uranian system with an averagely sensitive magnetometer could provide the data needed to determine if those larger moons harbor subsurface oceans. This work is another step down the path of expanding what we think of as habitable environments in the solar system.