
Copernical Team
Hubble set to resume science operations

Distant planet may be on its second atmosphere

Perseverance SuperCam science instrument delivers first results

Roscosmos, NASA in contradiction over next ISS Commander

Four Long March 11 launches by sea planned

China's Long March 7A rocket puts satellite in orbit

Asteroid 2001 FO32 will safely pass by Earth March 21

Perseverance rover's SuperCam science instrument delivers first results

The first readings from the SuperCam instrument aboard NASA's Perseverance rover have arrived on Earth. SuperCam was developed jointly by the Los Alamos National Laboratory (LANL) in New Mexico and a consortium of French research laboratories under the auspices of the Centre National d'Etudes Spatiales (CNES). The instrument delivered data to the French Space Agency's operations center in Toulouse that includes the first audio of laser zaps on another planet.
"It is amazing to see SuperCam working so well on Mars," said Roger Wiens, the principal investigator for Perseverance's SuperCam instrument from Los Alamos National Laboratory in New Mexico. "When we first dreamed up this instrument eight years ago, we worried that we were being way too ambitious.
New Vacuum Solar Telescope reveals acceleration of magnetic reconnection

Magnetic reconnection shows the reconfiguration of magnetic field geometry. It plays an elemental role in the rapid release of magnetic energy and its conversion to other forms of energy in magnetized plasma systems throughout the universe.
Researchers led by Dr. Li Leping from National Astronomical Observatories of Chinese Academy of Sciences (NAOC) analyzed the evolution of magnetic reconnection and its nearby filament.
The solar wind, explained

The solar wind is a flow of particles that comes off the sun at about one million miles per hour and travels throughout the entire solar system. First proposed in the 1950s by University of Chicago physicist Eugene Parker, the solar wind is visible in the halo around the sun during an eclipse and sometimes when the particles hit the Earth's atmosphere—as the aurora borealis, or northern lights.
While the solar wind protects Earth from other harmful particles coming from space, storms can also threaten our satellite and communications networks.
What is the solar wind?
The surface of the sun is blisteringly hot at 6,000 degrees Fahrenheit—but its atmosphere, called the corona, is more than a thousand times hotter. It is also incredibly active; those flares and loops are the halo you see around the sun when there's an eclipse.
The corona is so hot that the sun's gravity can't hold it, so particles are flung off into space and travel throughout the solar system in every direction. As the sun spins, burns and burps, it creates complex swirls and eddies of particles. These particles, mostly protons and electrons, are traveling about a million miles per hour as they pass Earth.