
Copernical Team
Unique solar system views from NASA sun-studying missions

Though they focus on the star at the center of our solar system, three of NASA's Sun-watching spacecraft have captured unique views of the planets throughout the last several months. Using instruments that look not at the Sun itself, but at the constant outflow of solar material from the Sun, the missions—ESA and NASA's Solar Orbiter, NASA's Parker Solar Probe, and NASA's Solar and Terrestrial Relations Observatory—have sent home images from their distinct vantage points across the inner solar system.
All three missions carry instruments to study the Sun and its influence on space, including cameras that look out the sides of the spacecraft to study the Sun's outer atmosphere, the solar wind, and the dust in the inner solar system. It's these instruments that, at various points in 2020, saw several planets pass through their fields of view.
A year in the life of GSTP

For more than a quarter of a century ESA’s optional General Support Technology Programme (GSTP) has been preparing promising technologies for space.
OSIRIS-REx mission plans for May asteroid departure

Since its launch in September 2016, the OSIRIS-REx spacecraft has traveled billions of miles, mapped the surface of an asteroid in unprecedented detail, and made new scientific discoveries about near-Earth asteroids. Now, it's preparing to bring a piece of asteroid Bennu home.
On May 10, NASA's OSIRIS-REx spacecraft will say farewell to asteroid Bennu and begin its two-year journey back to Earth, where the dust and rocks collected during the Touch-And-Go maneuver in October will be studied by scientists, including OSIRIS-REx mission principal investigator and University of Arizona planetary scientist Dante Lauretta.
During its Oct. 20, 2020, sample collection event, the spacecraft collected a substantial amount of material from Bennu's surface, likely exceeding the mission's requirement of 2 ounces, or 60 grams.
EDRS: the space data highway

The European Data Relay System, or EDRS, uses cutting-edge laser technology to greatly reduce the time it takes for information to be sent from low-Earth orbiting spacecraft – such as the Earth observing Sentinel satellites – to Earth.
The system makes Earth observation information available in almost real-time, which can help disaster management workers and the emergency services accelerate their responses to natural crises.
Known as the ‘space data highway’, it currently consists of an extensive network of European ground stations and control centres, and two sister satellites: EDRS-A and EDRS-C. Both are in geostationary orbit at an altitude
The naming of Tooley crater

Satnav antenna built for ends of the Earth

A new ESA-supported wide-bandwidth satnav antenna has been designed to receive both satellite and augmentation signals from anywhere in the sky, even down to just a couple of degrees above the horizon.
When galaxies collide

AI: ensuring that humans remain in the center

Hot Fire met many objectives, test assessment underway

NASA Marshall, SpaceX team celebrates engines of success
