...the who's who,
and the what's what 
of the space industry

Space Careers

Products  Project List

Displaying items by tag: data handling

Designed for advanced nano-satellite constellations in LEO and deep space exploration missions the readily available Sirius OBC with LEON3FT delivers ‘always-on’ reliable operations that work every time on time with precision performance. With enhanced error detection and correction, the Sirius OBC is tolerant to Single-Event-Effects (SEE) in logic and data storage. Fault tolerance is secured through TMR (Triple-Modular Redundancy) on all FPGA flip-flops and through boot flash and EDAC (error detection and correction) on memories. The development kit is powered through a mains 12V adaptor, eliminating the need for specialised power supplies or other laboratory equipment.

Sirius spacecraft avionics are modular in design. Modules can be combined to offer redundant configurations, or to simply accommodate mission specific requirements. The Sirius TCM LEON3FT has a standard single string system that consists of an on-board computer (Sirius OBC) and a combined mass memory with CCSDS stack (Sirius TCM). The OBC runs mission specific software and manage the spacecraft system. The TCM receives and stores payload data and platform housekeeping data while at the same time distributing telecommands and serving mass memory data to the transceiver.

 

Published in Products
Monday, 14 September 2020 13:07

SIRIUS TCM LEON3FT - Command & Data Handling

Flight proven across multiple mission applications for a range of customer requirements, this readily available solution has a reputation for reliability and performance for advanced small and nano-satellite missions. The Sirius TCM LEON3FT has inherited advanced error detection and correction in it’s design. The real-time operating system runs on a LEON3FT fault-tolerant soft processor, compliant to IEEE 1754 SPARC v8, and fault tolerance is secured by using triple-modular redundancy on FPGA and memory scrubbing.

Sirius spacecraft avionics are modular in design. Modules can be combined to offer redundant configurations or to simply accommodate mission specific requirements. The Sirius TCM LEON3FT has a standard single string system that consists of an on-board computer (Sirius OBC) and a combined mass memory with CCSDS stack (Sirius TCM). The OBC runs mission specific software and manage the spacecraft system. The TCM receives and stores payload data and platform housekeeping data, while at the same time distributing telecommands and serving mass memory data to the transceiver.

 

Published in Products
Monday, 14 September 2020 12:57

SIRIUS OBC LEON3FT - Command & Data Handling

Designed for advanced nano-satellite constellations in LEO and deep space exploration missions the readily available Sirius OBC with LEON3FT delivers ‘alwayson reliable operations that work every time on time with precision performance. With enhanced error detection and correction, the Sirius OBC is tolerant to Single-Event-Effects (SEE) in logic and data storage. Fault tolerance is secured through TMR (Triple-Modular Redundancy) on all FPGA flip-flops and through boot flash and EDAC (error detection and correction) on memories.

Sirius spacecraft avionics are modular in design, modules can be combined to offer redundant configurations or to simply accommodate mission specific requirements. The Sirius TCM LEON3FT has a standard single string system that consists of an on-board computer (Sirius OBC) and a combined mass memory with CCSDS stack (Sirius TCM). The OBC runs mission specific software and manage the spacecraft system. The TCM receives and stores payload data and platform housekeeping data while at the same time distributing telecommands and serving mass memory data to the transceiver.

 

Published in Products
Monday, 14 September 2020 12:38

KRYTEN-M3 - Command & Data Handling

Developed to deliver ‘always-on’ operation, KRYTEN-M3 computing solutions work every time on time. Flight proven across multiple mission applications for a range of customer requirements, this readily available solution has advanced error detection and correction. Featuring a SmartFusion 2 SoC including Cortex-M3 processor @ 50 MHz delivering 62.5 DMIPS, and enhanced hardware/ firmware recovery mechanisms, the KRYTEN- M3 delivers advanced precision performance for the most demanding nanosatellite missions.

Our reliable space data handling solution is safeguarded with autonomous single event latch-up protections, ADVANCED PRECISION PERFORMANCE delivering high performance computing with integrated cache and Non-Volatile MRAM Memory. All protected by SECDED and EDAC mechanism to guard against radiation effects.

The inclusion of 4 GB of SLC flash memory provides ample space for mission data storage. GPS is available on Kryten-M3- PLUS models.

KRYTEN-M3 is supplied with a BSP including bare metal drivers, comprehensive API reference documentation, a full user manual and thoroughly documented source code.

Published in Products